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FOREWORD

The investigation reported herein is part of the research project at --

The Ohio State University, Columbus, Ohio supported by the Air Force Of-

fice of Scientific Research Grant 83-00-55. Lt. Col. John J. Allen was

the Program Manager at the commencement of the project. Lt. Col. Law- i

rence D. Hokanson was the Program Manager from July 1, 1983. The re-

search project was started Feburary 1, 1983 and is continuing. The

present report documents part of the work done up to January 31, 1984.

At The Ohio State University, the project is supervised by Dr. Ranbir

S. Sandhu, Professor, Department of Civil Engineering. The computer pro-

gram modification and analyses reported herein were started by Dr. Baher

L. Aboustit, Post-doctoral Reseach Associate and completed by Mr. Soon-

jo Hong, Graduate student, who also prepared the documentation on the

- Ohio State University Computer System. The Instruction and Research

Computer Center at The Ohio State University provided the computational -*;

facilities.
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ABSTRACT

Numerical performance of Ghaboussi and Wilson's isoparametric bili-
0

near quadrilateral element, for analysis of quasi-static flow of an in-

compressible fluid through a linear elastic saturated porous soil, is

compared with that of Sandhu's composite element in which the displace-

ment has biquadratic interpolation. Application of both procedures to .

solution of Terzaghi's one-dimensional consolidation and Gibson's prob-

lem of plane strain consolidation of the half-space under a strip load

shows that Ghaboussi and Wilson's procedure gives results almost identi-

cal to those from the higher order element but is significantly more ec-

onomical to use.
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SECTION I

INTRODUCTION

Since the first application of the finite element method to analysis70,

of seepage in elastic media (1,2)* considerable progress has been

made in the theoretical formulation as well as computational procedures.

Recent advances include variational formulations admitting limited

smoothness of finite element bases (3,4), experimentation with several

different spatial interpolation schemes and investigation of various

temporal approximation methods (5-15). The finite element method has

been applied to soils exhibiting secondary compression (8,11,13), nonli-

a near soil behavior (13,14-18), and to finite deformation (16,18). Devel-

opments in solution procedures include use of Laplace transforms

(10,11,19), automatic selection of the time-step size (13) and the use

- of single variable formulations (20,21).

In spatial discretization, Sandhu (1) proposed that the order of

terms appearing in a convolution product in the variational principle be

I the same. This produced the "composite" element in which the order of

polynomial interpolation for displacements was higher than that for

* fluid pressures. The composite element first proposed by Sandhu (1,2),

and used by Hwang (22) and others, was the "63" element with quadratic

interpolation for displacements and linear interpolation for fluid pres-

- - - ------------------------------------------------------

* * Numerals in parentheses refer to corresponding items in SECTION VII
RE FE RENCE S
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sures over triangular regions. Later, Sandhu (7,23) introduced the "84"

element which had eight point biquadratic interpolation for displace-

ments and was a four point isoparametric quadrilateral for fluid pres-

sures. This element was also used by Runesson (13). Buchmaier (24) ex- .

perimented with five, six and seven point quadrilaterals for fluid

pressure as transition elements near loaded surfaces.

Several spatial interpolation schemes, besides the composite ele-

ments, have been tried by various investigators. Ghaboussi (5) used S

four point isoparametric quadrilaterals for both the fields. However, an

adtlitional incompatible mode was included in the displacement approxima-

tion. This element has the economy while the additional "local" mode .

gives it the character of a "higher order" scheme. Smith's (25) formula-

tion was similar to Ghaboussi's except that no incompatible modes were

used. Prevost (9) proposed cautious use of "reduced integration" in con- .

juction with Smith's "44" element. Yokoo (26), Booker (19), and Vermeer

(27) used triangular elements with linear interpolation for both the

displacement and the fluid pressure fields. Other interpolation schemes, .o

based on use of quadrilaterals built up from linear four or five point

triangles were tried by Sandhu (8).

All investigators have generally reported success with whatever

scheme they used. Comparative studies of different elements are rare. . .

Some comparisons of nemerical performances were attemped by Sandhu

(7,8). In evaluating various candidate schemes, Sandhu proposed that an

acceptable method meet the following requirements in addition to effi-

ciency and accuracy.

I. The interpolation scheme must conform with the assumptions

... ... . . .. ...... .-. _.... ..... .....
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regarding continuity and differentiability used in setting up the

governing variational formulation.

ii. It should be possible to generate the "undrained" solution, i.e.

the state of fluid pressures and displacement at time t = 0+.

iii. For sufficiently small time steps, the scheme should be insensi-

tive to the choice of the time-step size.

Elements "63" and "84" satisfy these requirements. However, the compos- - .

*ite elements are too expensive to be used in large problems. This has

discouraged extension of the analysis to three-dimensions, and to nonli-

near and dynamic problems. The 4-4 element is more economical but was

found by Sandhu (8) to have oscillatory errors. The "63" element has

been widely used because it was the first one to be introduced and gave

satisfactory results in most cases. However, the 8-4 element gives re-

sults almost identical to those from the "63" element but is more eco-

nomical as it requires fewer nodal points and has less band-width. Gha-

boussi's element (5) was not included in this comparison.

The purpose of the present investigation was to implement Ghaboussi's

formulation (we refer to it as the 6-4 element because of the additional

internal modes in the displacement representation) and to compare its

performance with that of the 8-4, element. Both the elements were used to

solve Terzaghi's problem of one-dimensional consolidation and Gibson's

problem of a half space under a strip load. To simulate consolidation of - .

the half space by a finite domain model, an approximation to the condi-

tions at infinity is required. Three alternative assumptions regarding -- -

the "cut off" boundary were considered. _

,-............ .. . . . . .. . . . . . "..
• . .-. -'," ,"." ." .
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SECTION II summarizes the governing field equations following

Ghaboussi (5). The finite element development is given in SECTION III.

SECTION IV describes the example problems. Results of the analysis are

given in SECTION V.

-.
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SECTION II

EQUATIONS GOVERNING LINEAR ELASTIC SOIL CONSOLIDATION

Assuming pore water to be compressible, the equations of force equi-

librium of elementary volumes and mass continuity, over the spatial re-

gion of interest R, may be written in standard indicial notation as,

[Appendix A],

[Ekl +a17.+ f.=O (1)
klijUk,l ,i ,j +j =

[K.j(iT + + u. = (2)

where ui, fi Eklij. Kij, denote the cartesian components, respectively,
1J

of the displacement vector, the body force vector per unit mass, the iso-

thermal elasticity tensor and the permeability tensor.pis the mass den-

sity of the saturated soil and P2 that of water. 7r is the pore water

pressure, C is the solid compressibility and M is a measure of fluid

compressibility. With these field equations we associate the following l

boundary conditions;

-i u i on S.i (3) "'.

t. •n. on S (4)

. =7r on S 3 (5)

A
= Qn = Q on S4  (6)

5
77.....'LI . .
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Here, ti, qi are components of the traction and fluid flux vectors asso-

ciated with surfaces embedded in the closure of R. ij are components of

the total stress tensor. S S21 are complementary subsets of the bound-
ii

ary of the spatial region of interest and so are S3, S4. Even though the

equations given above apply to compressible fluids, the applications re-

ported herein assumed incompressible fluid i.e. M -b . The initial

conditions for the problem are

.0 . -

ui(x., 0) = ui(O) on R

VT(x., 0) =V(0) on R

3=

_ _

.*.... . . . . . . . . . . .'
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SECTION III

FINITE ELEMENT FORMULATION

Discretization of the governing function for the two-field formula-

tion followed by application of the variational principle (5) leads to

the following matrix equation.

-*.uu Kp - .0 .P1

j (7)K t K-K PP PP

where (t 0 tj) is the single time step of interest, and;

At = t -t1- 0

tu(ti)1,Ju(to)}= vectors of nodal point values of the components of

the displacement at time t1,t , respectively
0S

j7r(tj)} 1~7r(to)i = vectors of nodal point values of the pore water pre-

ssure at time t1,t0, respectively.

the vector of nodal point loads including applied nodal loads,

boundary tractions, body forces, initial stresses and effect of

displacement constraints.

P2=the vector of nodal point fluxes including applied nodal fluxes,

boundary fluxes, body force effects and effects of specified -

pore water pressures.

(Ku] the spatial "stiffness matrix" for the elastic soil.

(K the spatial "flow matrix" for the compressible fluid and At= 1.
pp

the coefficient characterizing single-step temporal discreti-

7
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zation.

pu]= the coupling matrix representing the influence of pore pressure

in the force equilibrium equation. .

[K ]T= the coupling matrix representing the influence of soil volumepul

change upon the nodal point fluid pressure.
.

[Cpp] the spatial fluid compressibility matrix.

The matrix [Kuu] depends upon the interpolation scheme for displacements

and [Cpp], [Kpp] depend upon the interpolation scheme for the pore-water .0

pressures. The coupling matrix [Kpu] involves spatial interpolation for

both the field variables. The temporal discretization for the single

step scheme is reflected in the value of the coefficient af. For linear

interpolation a = 0.5.

Equation (7) includes the "natural" boundary conditions expressed by

Equation (4) and (6). Equation (3) and (5) are satisfied by explicitly

requiring ui = ion Sliand 71=4 on S3 . Development of the vectors and

matrices appearing in Equation (7) is given in Appendix B. As the fluid

is assumed to be incompressible in both the example problems, the matrix

C is zero. It is included in the theoretical discussion for complete-

ness. The computer program can handle compressible as well as incompres- .

sible fluids.

0 ' •.-.

0 "

- " . . . .
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SECTION IV

EXAMPLE PROBLEMS

An existing computer program, initially developed by Dr. J.K. Lee of

the Department of Engineering Mechanics, The Ohio State University, was

modifiled to include plane strain consolidation using both the 8-4 and

the 6-4 elements. rhe code was used to solve Terzaghi's problem of one-

* dimensional consolidation and Gibson's problem of two-dimensional con-

solidation. For these problems, the theoretical solutions are known and,0

therefore, precise comparison was possible.

For Terzaghi 's problem, the dimensions of the consolidating soil col-

umn and soil properties were the same as in Sandhu's example (23); i.e.

soil depth h =7, modulus of elasticity E =6000, Poisson's ratio=

0.4, coefficient of permeability K =4x10 Soil and water particles

were assumed to be incompressible, i.e. a =1, M-, in Equation (7).

Figure 1 illustrates the problem and Figure 2 illustrates the mesh used

in the analysis. The mesh consisted of 9 elements with 20 nodes when .-

using the 6-4 element and 48 nodes when using the 8-4 element. In tern-

* poral discretization, the coefficient a was given the value of 0.5. The

* following temporal partition was considered.

10 steps of At = 0.000001 over [0,0.00001]
10 steps of At - 0.01 over [0.00001,0.1J
10 steps of At = 0.1 over [0.1, 1.1)
10 steps of At = 10 over [1.1, 101.1)
10 steps of At = 100 over (101.1, 901.1]

where unit is second.

9

.. - °
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Saturated Soil Column
h= 7
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Figure 1: Terzaghi's One-Dimensional Consolidation
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Figure 2: Finite Element Mesh for Terzaghi's Problem
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The second problem was that of a saturated layer of finite thickness

subjected to a strip loading. An analytical solution for this problem

was developed by Gibson et al. (28). The material properties were as-

sumed the same as for the one-dimensional problem except that Poisson's

ratio was set equal to zero in the problem. The geometry and the finite

element mesh are shown in Figure 3. The mesh consisted of 88 elements

with 108 nodes when using the 6-4 element and 303 nodes when using the

8-4 element. Since the infinite domain had to be modeled by a finite

one in the numerical schemes, the following alternative boundary condi-

tions were specified at the far boundary where the half-space was cut

off.

a. Pore fluid pressure and horizontal displacement prescribed.

b. Fluid flux and horizontal displacement prescribed.

c. Pore pressure and traction prescribed.

In temporal discretization, the factor a was set equal to 0.5, i.e.

piecewise linear variation in ui and V was assumed. The following par-

tition was used;

10 steps of At = 0.1 over [0,1]
10 steps of At = 1 over [1,11]
10 steps of At = 10 over [11,111] 0
10 steps of At = 100 over [111,1111]
10 steps of At = 1000 over [1111,11111)

Here, unit is second.

. ...............
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SECTION V

RESULTS OF ANALYSIS

A. Terzaghi's Problem of One-Dimensional Cosolidation

In analyzing Terzaghi's problem, Figure 1, CPU time on the AMDAHL

* 470/V8 Computer was 13.92 seconds for 8-4 element while for the 6-4 ele-

- ment it was 10.03. Table 1 shows time settlement history for the two

types of elements as well as the analytical solution. The response of __16

* the two elements practically coincided throughout the time domain and

* was in good agreement with the analytical solution, except at early time -

i.e. t < 0.1. The pore-pressure distribution generated by the two ele-

* ments for different time steps is shown in Figure 4. The vertical axis

* shows the ratio of depth below surface to the total height h of the soil

column considered. The horizontal axis gives the pore fluid pressure as

a fraction of the intensity of the constant surface load. The plots are

for values of time variable equal to 0.000001, 11.1, 201.1, and 901.1
2

corresponding to non-dimensional time factor T = tt/h of 0.1x10_8 ,

0.01165, 0.2110, 0.9195 where =2GK and K is the coefficient of perme-

- ability. The plots of pressure distribution history generated by the two

schemes coincide. At early stages, the error in the pore pressure at

points near the loaded surface is quite large for both the schemes. This

is a feature of the spatial interpolation (8) used.

aN

~~,... o"*.+..-.-

. . . . . . . . . . . . . . .. . . . . . . ..V. ,* .* . - * .... ,..,
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TABLE 1

Surface Settlement History

-------------------- --- ---- --- --- ---- --- - - ---

Time 8-4 Element 6-4 Element Exact(Ref.23)
(sec)

0.2 0.51917410 0.51583x105  O.28147xl0 5

------------------------------------ -----------------
0.6 0.15881x10-5  0.15849x10-5  O.15417xl10 5

1.1 O.21221x10-4  0.21189x10-4  0.20874x10-4

21.1 0.91394x10-4  0.913654104  O.91423x10-4
------------- ----------------------------------------
41.1 0.12815x10-3  0.12813xI10 3  0.12760xl103

81.1 0.18022x10-3  0.18019x10-3  0.17924x103

301.1 0.34446x10-3  0.34450x,0-3  0.34205xI10 3

90. 0532410 0.50351x10 3  0.50166410 T

----------------- -- --- --- --- ---- --- --- --- ---
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0
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0
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STIME= 0.1110+02
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L
Figure 4: Fluid Pressure Distribution at Various Time Stages
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B. Gibson's Problem of Plane Strain Consolidation under a Strip Load

In analyzing the second problem, the CPU time on the AMDAHL 470/V8

Computer for 8-4 element was 315 seconds while for the 6-4 element it

was 33 seconds. Table 2 shows vertical displacement and pore pressure at

the distance 0.084a below the surface directly under the center of the

loaded area. Here, a is half-width of the loaded strip. A non-dimension-

al measure of the settlement is introduced as Gu/aq where G is the shear

modulus, q the intensity of load per unit width of the strip. The fluid

pressure is represented by the fractionm/q. The quantities are tabulat-

ed for dimensionless time given byT= ct/h? Good agreement between the

results for the two finite element procedures is seen at all time stag-

es. Table 3 and Figure 5 show comparison between the settlement and pore

pressure history for cases a and b, using the 6-4 element under diffe-

rent conditions at the "cut off" boundary. From Table 3 and Figure 5, it

appears that the location of the "far" boundary was selected far enough

so that, for the case where horizontal displacements are assumed to van-

ish at this distace, prescribing vanishing fluid pressure or fluid vel-

ocity at this boundary had little effect on the displacements and fluid

* pressures near the center of the loaded area.

Comparing case c with case a, i.e. considering the effect of traction

or displacements at the "far" boundary for prescribed fluid pressure, it - .

was found, Figure 6, that the settlement in the early stage of loading

was significantly affected. The solution for case c was in excellent - *0

agreement with Gibson's (28) theoretical solution.

. . . . . . .. .*°9 .• . - . . • . °. ** •. . . .° .. *° °-*. ° °*. . •°, . . . ••. . ... . • . . . .° ° • - °. °
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TABLE 2

Vertical Displacement and Pore Pressure at 0.084a below the Center of
the Loaded Area. Case a: Fluid Pressure Prescribed at the "far"

Boundary .

Gu/aq 7T/q0

8-4 6-4 8-46-

9 x15  0.176136 0.177012 0.88874 0.9002

3.84x10-4  0.180666 0.181698 0.48602 0,48610S

0.01056 0.190212 0.191256 0.32230 0.32164

0.03936 0.218784 0.22014 0.17829 0.18030

0.10656 0.262584 0.264534 0.11498 0.11526 0

0.39456 0.365376 0.36753 0.50406 0.50271

0.68256 0.413892 0.416008 0.25815 0.25778.

1.06656 0.443682 0.445914 0.01117 0.011170

3.94656 0.466842 0.469134 0.117410 0.115x10
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TABLE 3

* Comparison of Case a and b: Vertical Displacement and Pore Pressure at

0.084a below the Center of the Loaded Area

CtGulaq 7r/q

h2Case a Case b Case a Case b

.615 0.17855 0.177012 0.89619 0.90026

.614 0.17926 0.17769 0.73221 0.73562

0.01056 0.192738 0.191256 0.32014 0.32164

0.04896 0.229296 0.22779 0.16341 0.16434

0.10656 0.265962 0.264534 0.11456 0.11526

0.87456 0.433548 0.434202 0.017178 0.016863

1.06656 0.445332 0.445914 0.011439 0.011163

L -- --- --- - L --- ---- --- --- --- --- --- --- --- -- --- ---
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Figure 5: Pore Pressure Contours by 6-4 Element at ft/h 2=O.5856 (a)
Free drainage is permitted along A. (b) No drainage along A.
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SECTION VI

CONCLUSIONS

Ghaboussi and Wilson's 6-4 element and Sandhu's 8-4 element were ap-

plied to Terzaghi's and Gibson's problem for which exact solutions are

available. Results of these limited tests show; ..

i. The 6-4 element gave a solution identical to that given by the 8-4

element but with significant savings in computational time.

ii. The 6-4 element as well as the 8-4 element predicted the un- -

drained solution (t = 0+).

iii. At early stage of loading, both elements gave unsatisfactory re-

sults. Apparently, special singularity elements (29) are required near

loaded drained surfaces.

iv. The conditions at the "cut off" boundary for the finite domain

considered in the finite element model must be carefully defined. The

solution near the loaded region was not sensitive to whether the fluid .

flux or fluid presure was prescribed. However, prescribed displacement

or tractions had significant influence. This is in line with Sandhu and

Schiffman's experience (30).

v. The 6-4 element is distinctly superior to the 4-4 element in that

it gives the solution at time = 0+ and does not have the oscillatory er-

ror of the 4-4 element. At the same time, it has the economy of the sim-

pler element.
23
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vi. Using the 8-4 element to generate the solution at time t =0+,

numbering of the nodal points has to be carefully ordered to avoid ze-

roes on the diagonal of the matrix. However, Ghaboussi and Wilson's 6-4

element is free from this defect. This is because, in eliminating the

additional degrees of freedom, the static condensation would, in gener-

* al, result in non-zero diagonal quantities.

vii. Finally, it appears that Ghaboussi and Wilson's 6-4 element is a

good candidate for consideration towards application in nonlinear and

* dynamic problems as well as for extension to three-dimensional applica-

* tions.
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APPENDIX A

EQUATIONS OF CONSOLIDATION

In this appendix, we list the field equations governing the quasis-

tatic deformation of soil-water mixtures, following Biot's theory (31).

A.1 PRELIMINARIES

Let R be the open connected region occupied by the fluid-solid mix-

ture. Let OR be the boundary of R and IT its closure. The domain of defi-

nitions of all functions of interest is the cartesian product R x [0,e).

Here, [0,..) denotes the positive interval of time.

Let Ui(x,t), Ui(x,t), wi(x,t), eij(x t). Oij t),ijxt), fi(x,t), - .

qi(x,t) and Bi(x,t), in that order, denote cartesian components of the

displacement vector, the fluid displacement vector, the relative dis-

placement of the fluid with respect to the solid, the infinitesimal

strain tensor, the symmetric Cauchy effective stress tensor in the soil,

the total stress tensor, the body force vector, the fluid flux vector

and the quantity, conjugate to the fluid flux vector, denoted by vector

0. Also, let 7r(x,t) denote the isotropic fluid stress above a reference

state (throughout, we shall consider the atmospheric pressure to be the

reference state). Let P denote the bulk density of the mixture. . .

Pequals the sum of the equivalent bulk density P, of the soil and P2 of

the fluid. Following Biot (31), we assume the stresses (i(x,t) and

7(x,t) to act, respectively, over the solid and the fluid areas of any .9

surface element.

29
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A.2 THE FIELD EQUATIONS

A.2.1 Kinematics

For small strains, infinitesimal strain tensor is expressed in terms

of displacement components as

eij 1/2 (ui, j + uj,i) : u(ij) (A-1)

Displacement of the fluid relative to the solid but measured in terms of

volume per unit area of the bulk medium is defined by

wi(= i "i) (A-2)

where f is the porosity. Accordingly, for uniform porosity, the fluid

relative volumetric strain is given by

= f(U i - ui,i) (A-3)

A.2.2 Constitutive Equations

The constitutive equations have to be written for the stresses as

well as for diffusive resistance.

A.2.2.1 Total and Pore Pressure

Biot (31), assuming the existence of a strain energy function for the _

mixture, postulated the following constitutive relations for compressi- -

ble fluid following through linearly elastic solid.

rij = Eljklek] + a7r6ij on 7 x [o,..) (A-4)

°,'°4

:*• ° . o •*
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71= N (a ekk + )x Me (A-5)

where Eijkl, a1, M are material coefficients.

A.2.2.2 Diffusive Resistance

Diffusive resistance in a binary mixture of soil and water, for no

inertia effects, is defined (1) by the components

-7 - f (A-6).- i

-ji, + P, fi (A-7)

For the linear theory, assuming irrotational isothermal flow, the diffu-

sive resistance is linearly proportional to the relative velocity of the

fluid-solid constituents. This leads to

Vi + P2fi = 0 = - i = Cijw j  (A-8)

where wj are components of the nominal relative velocity and Cij are

are components of the flow-resistivity tensor. Symmetry requirements im-

ply

Ci  = Ci (A-9)

If the resistivity tensor has an inverse denoted by components K
ij'

Equation (A-8) gives a generalization of Darcy law

L Iw - .,A-.)
Wl- ql = llj(-O ' "p. ' -'.. ..
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The permeability tensor is symmetric so that

Kij =Kji (A-Il)

A.3 BALANCE LAWS

A.3.1 Force Equilibrium

Balance of forces on infinitesimal volumes, assuming small deforma-

tion, neglecting inertia and in the absence of body couples is expressed

by equations

tij,j +Pfi = 0 on R x [Me) (A-12) 0

f -(A-13)
Ti -T. -

A.3.2 Mass Continuity

For no chemical reaction between constituents of a binary mixture,

the mass of each within a fixed volume must be conserved. Referring to

material frame associated with the soil skeleton, for compressible

fluid, continuity impies continued saturation of the soil. Formally, we

write S

K , jK. + 02fj),i (A-14)

Combining Equations (A-5) and (A-14) to eliminate ,

ii + (/M)7= + (A-151 ......

. . °



33

i.e., for compressible fluid and solid, the rate of the outflow from a..

material volume of soil skeleton equals the rate of decrease of the vo-
lume. Equation (A-12) upon substitution of Equation (A-4) and (A-2)

yields Equation (1) of SECTION II. Equation (2) in that section is a re-

arrangement of Equation (A-15).

-



GHABOUSSI AND WILSON'S ELEMENT

In this appendix, we outline the development of matrices for the 6-4

element.

B.1 GEOMETRY

The cartesian coordinates of any arbitrary point in a quadrilateral

may be written as

4
x (B-i)xil

4 -.

Y = ZYiNi (B-2)

where Ni are the interpolating functions and xi, yi are the coordinates .

of the four nodal points of the quadrilateral.

B.2 DISPLACEMENT

For an isoparametric element, the interpolating functions for the

displacement and geometry are the same. However, in this element two ex-

tra modes are used in defining displacements, i.e.

6
U = -UiNi  (B-3)i-i i::~ : i

6" .I v v N . ( B -4 )

* i35
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where u and v are the components of displacement vector along x and y

di recti on. ui, vi are the nodal point displacements or the generalized

coordinates associated with the additional modes.

B.3 PRESSURE

The fluid pressure at an arbitrary point of the isoparametric element

* is

40
7r 7iNi =N,,7r (B-5)

*where 7r' is the vector of nodal pressure. In Equations (B-1) through

(B-5), the Ni, i=1,6 are

N, 114 (1-s)(1-t)

N2 =1/4 (1+s)(1-t)

N3 =1/4 (1+s)(1+t)(B)

N 4 =1/4 (1-s)(1+t)

N5  (1-s2) ~

N6 =(- 2)

where s, t are the local coordinates of the element such that the oppo-

site pairs of sides of the element are represented by s il± and t z ±1.
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B.4 STRAIN-DISPLACEMENT RELATIONSHIP

]I -6
iexx b/bx o "'b/bx o ZuiNj

*:[ 1 /x [il 1x ,,,0y o b/b 0 b/by

2e jb/b b/bxJI vj 1 vN.0l~xy y b/by 8/bxI 1i

6

6

6 " 'e" (B 7)

,vi +N ,u) S

where Uj is the vector of nodal and generalized displacement and B eis an

appropriate transformation. The volumetric strain is given by

6 6
ei + , xNi xui Ni Yvi B (B-8)

i-ii-i-..-

8.5 PRESSURE GRADIENT

Components of the pressure gradient are;
0 y

i -1 ,,1

B. RESR GRDIN "J'-B'"(B"
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B.6 EVALUATION OF DERIVATIVES N. AND N.

Equation (B-6) gives the interpolating functions in terms of the lo-

cal coordinates s,t. To evaluate derivatives with respect to global

coordinates x,y, we use the relationship

[.Jjby/bt -by/bs N i's B-0
,x lis (B-10)" :

Ny -bx/bt 8x/Os N

4 4 4 4.
where J=(Di sXi)(2Nt )  (Y-Ni,syi)(Ni,txi). Equation (B-10) isJ=1 1 -~yi -0i

obtained by inverting the expressions of Ni s and Ni't  in terms of Ni, x

and Ni , y by the chain rule of differentiation. .

B.7 ELEMENT MATRICES

The element matrices contributing to the system described by Equation

(7) are defined as follows.

K u =JJ~e D Be J dsdt (B-li)
, q,

K T, J dsdt K T (-13)up =ffA!rpu

K =ff1 f NT J dsdt (B-14) "

Here D, k are matrices describing the elastic properties and the perme-

ability, respectively, of the porous material.

iT. -.2 . .
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B.8 LOAD VECTORS

The vecto
The ve tor ll, jP2 1 on the right hand side of Equation (7) are

given by

IP 11 IM1 tM3I 8-5

121 =a,&t M2(t1) +(1-0) AtM2(to) - At M4(t1)

-(1-a) At M4( 0  (-16)

where

?j =f'u JPfj J dsdt (B-17)

1M 21 =ff N k JPt3 J dsdt (B-18) .

M3) f Nu qt i)d (B-19)

S.

41 f tqT fQ) dS4  (-0

where Nu~ ,, are defined in Equations (B-3), (B-4) and (B-5), and f is

assumed to be constant over each element. N4t. Nq9 %, fifrepresent inter-

polating functions for boundary tractions, boundary flux, displacements

of the solid and fluid pressures, respectively. The interpolating func-

tions Nu, a,,, for the consolidating region and for its boundary will be

different.
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BA9 ELIMINATION OF LOCAL MODES

For the 6-4 element, the discretized equations can be written for a

time step (toot 1 in the form,

[K]pu] uu1

Pu 'ir(B-21)
[KU 1T _[At[K l[C) I r(t1) {1r

where IRu MJ+ 3 (B-22)

and tR,.I [K ~jui(t0) ~I 2 t)

+ (1-a)Atim 2 (to)) -aAt{IM4(t1 )l (1-O)AtIM4(to)I (8-23) -

To eliminate the four degrees of freedom associated with the two incom-

patible modes for each displacement component, the consolidation Equa-

tion (B-21) can be partitioned as;

CK~~i [Kuu22] [K~~]u( 1  R 2  (B-24)

where the internal degrees of freedom are denoted by u2  Solving Equat-

ion (B-24) 2 for u2 ,

U 2 Kuu22 IR u2 -Kuu2lu1 Kpu 2 7T) (B-25)
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Substituting for u2 in Equation (B-24), and collecting terms,
20

(Kuu - Kuul2 Kuu22 uu1 Kjt)

pu[1  Kuu12 Kuu22 1 K)u2 IVitl)l

KR (B-26)
ul - uul2 Kuu 22 1 2

Similarly, substituting for u2 in Equation (B-24)3 and collecting terms, 0

[K T K T K 1 Kpul pu2 uu22 uu213 lul(t)

-[aAtK + C +K TK 1 K
pp pp pu2 uu22 pu2l 7~d

-K TK -1 (B-27)pu2 uu22 Ru21

Equations (8-26) and (B-27) can be rewritten as

uu Kpu u() fRu(B-28)
K*K r (t1 ) RV

where0

1Kw = uul - uul2 Kuu22 1 uu21 B9

pKu )=pu - uul2T uu22'K pu2 (-0

[Kpp3: -ClAtKpp - Ku Kuu2 Kpu p (8-31)

(RJ =Rui Kuu 2 uu2 R2 (B-32)p

~R~j R~ KuT K~u Ru (B-33) 2

pu2 u22 u
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It is worth noting that even if the fluid is incompressible. i.e. C is
pp

null, at AtO, K is, in general, nonzero. This makes solution of theD pp

undrained problem possible.

I . - , , .

I"-' 0 T-"-
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